Use of image-free navigation in determination of acetabular cup orientation: a comparison with a single X-ray image-based 2D/3D reconstruction method

Franke J^1 , Xie W^2 , Von Recum J^1 , Nolte LP^2 , Grützner PA^1 , Zheng G^2

jochen.franke@bgu-ludwigshafen.de

Introduction: Optimal acetabular cup orientation has been shown to be an important factor in determining the success of total hip arthroplasty (THA). In order to improve the intra-operative cup placement precision, navigation systems have been developed. Although both image-based as well as image-free navigation systems have been proposed before, in clinical routine the most-often used systems are image-free navigation systems, despite the fact that the registration method percutaneously touching bony landmarks may decrease the accuracy, especially in obese cases or in patient with acetabular dysplasia.

Materials & Methods: Placement accuracy in 9 joints in which THA was performed with the support of an image-free navigation system (OrthoPilot; Aesculap, Tuttlingen, Germany) was calculated by comparing the intra-operatively placement angle in the Anterior Pelvic Plane (APP) with the post-operative angle measured by a single X-ray image-based 2D/3D reconstruction method. With a statistical shape model, this single X-ray image-based 2D/3D reconstruction method allows reconstructing a patient-specific 3d-model of the pelvis from a standard post-operative anteriorposterior (AP) X-ray radiograph (see Fig. 1). Cup orientation (inclination and anteversion) is then calculated with respect to the APP that is derived from the reconstructed model. Our recent study [1] conducted on 31 hips demonstrated high precision of this novel method. In this study, we defined the difference between the intra-operative placement angle that was displayed on the navigation screen and the angle measured from a post-operative X-ray radiograph by the single X-ray image based 2D/3D reconstruction method as the error.

Results: The mean anteversion angle readout from the navigation screen was found to be $17.2^{0}\pm3.9^{0}$ (range: $10^{0}-23^{0}$) and the mean inclination angle was $43.7^{0}\pm3.0^{0}$ (range: $38^{0}-48^{0}$). The mean anteversion angle measured from post-operative X-ray radiographs with the single X-ray image based 2D/3D reconstruction method was $21.4^{0}\pm4.8^{0}$ (range: $12.8^{0}-28.4^{0}$) and the mean inclination angle was $45.2^{0}\pm4.3^{0}$ (range: $40.4^{0}-54.5^{0}$). In both inclination and anteversion angles, good agreement was observed for 7 out of 9 joints. A discrepancy of more than 5^{0} was observed in 1 case for inclination angle and 2 cases for anteversion angle, respectively. For the 7 joints with good agreement for both angles, a mean error of $2.3^{0}\pm2.0^{0}$ (range: $-2^{0}-4.3^{0}$) and a mean error of $0.6^{0}\pm2.6^{0}$ (range: $-2.2^{0}-3.2^{0}$) were found for the anteversion angle and the inclination angle, respectively. Using a pairwised T-test and choosing the significant level as 0.01, it was found that the differences were not statistically significant for both anteversion angle (p=0.022) and inclination angle (p=0.54).

Discussions and Conclusions: Accuracy analysis of the image-free navigation system has been performed before by taking post-operative CT measurements or post-operative X-ray radiograph measurements as the ground truth. This is for the first time to conduct the accuracy analysis of the image-free navigation system using measurements from our newly developed, single X-ray image-based 2D/3D reconstruction method as the ground truth. Previous studies have shown that the potential factors leading to assessment error in the use of the image-free system is inaccurate localization of the bony landmarks. In particular, since we did not divided the involved patients in this study into sub-groups based on their obesity or on whether they had acetabular dysplasia or not, we cannot eliminate the influence of these factors on the assessment accuracy. This probably explained

¹BG Trauma Centre Ludwigshafen at Heidelberg University Hospital, Ludwigshafen, Germany ²Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland

why we found a discrepancy larger than 50 in 1 case for the inclination angle and in 2 cases for the anteversion angle. However, the exact reason for such a relatively large discrepancy may be found with a post-operative CT scan, which at this moment is not available for this study.

Fig.1. Screenshots of the single X-ray image-based 2D/3D reconstruction method for measuring cup orientation from a post-operative X-ray radiograph.

References

[1] G. Zheng, et al. "Validation of a statistical shape model-based 2D/3D reconstruction method for determination of cup orientation after THA", Int. J. CARS, In press, 2012.