Computer Assisted Orthopaedic Surgery

10th Annual Meeting of CAOS-International Final Program

The World Leader in Orthopaedic Navigation.

For more information visit our website at www.OrthoPilot.com

Aesculap AG | 78532 Tuttlingen | Germany | www.aesculap.de

Conference Chairman

Philippe Merloz, M.D.

Department of Orthopaedics, University Joseph Fourier, Grenoble, France

Program Committee

Brian L. Davies, Ph.D. (Chairman)

London, Great Britain

Florian Gebhard, M.D.

Ulm, Germany

Branislav Jaramaz, Ph.D.

Pittsburgh, USA

David M. Kahler, M.D.

Earlysville, USA

Philippe Merloz, M.D.

Grenoble, France

Frédéric Picard, M.D.

Clydebank, Great Britain

Norberto Confalonieri, M.D.

Milano, Italy

Antony Hodgson, Ph.D.

Vancouver, Canada

P.S. John, M.D., Ph.D.

Kottayam, India

Leo Joskowicz, Ph.D.

Jerusalem, Israel

Lutz-P. Nolte, Ph.D.

Bern, Switzerland

Klaus Radermacher, Ph.D.

Aachen, Germany

CME Credits

The French Society of Orthopaedics (SOFCOT) has awarded the following education and training credits to the 10th Annual Meeting of CAOS-International

For Information and Registration Please Contact

CAOS 2010 Office c/o ConCoord GmbH Riedeggstrasse 8 3626 Hünibach Switzerland

Fax +41 33 534 4527

Email CAOS2010@CAOS-International.org URL http://www.CAOS-International.org/2010/

1

Wednesday, June 16, 2010

Pre-Congress Educational Workshops

After the great success last year, we will again offer a number of pre-congress educational workshops – even more than in 2009! A faculty of renowned experts will comprehensively introduce workshop participants to selected topics related to computer assisted orthopaedic surgery.

Two basic workshops will run in parallel and take place at 11:00-14:00 followed by six parallel advanced workshops (14:00-18:15).

Basic Workshop I – Introduction to CAOS for Clinicians New to the Activity

Organizers: Stéphane Lavallée and Leo Joskowicz

The goal of this workshop is to explain to clinicians the basic technical concepts of CAOS and their current use in clinical orthopaedic procedures. Technical concepts include visualization, segmentation, and modeling of anatomical structures from preoperative CT images, computer-based preoperative planning, real-time tracking, imaging, and registration for intraoperative navigation, and robot-assisted intraoperative execution. Computer-based procedures include total hip and total knee replacement, spinal procedures, ACL reconstruction, and fracture reduction and fixation.

Basic Workshop II – Introduction to CAOS for Technologists New to the Activity

Organizers: Eric Stindel and Paul Alfred Grützner

Computer assisted surgery, including new technologies of intraoperative 3D imaging, is indispensable in orthopaedic and trauma surgery since many years. This workshop is aiming at students and young engineers, providing an overview on the actual status of CAOS in clinical use.

For future developments, an intense dialogue between developers, researchers and physicians is essential. Efficient research must be orientated on clinical problems and needs. For that purpose an understanding of special conditions in the operation room and of limitations of existing technology is very important. The common goal of engineers and clinicians is the development of more precise, more reliable, simpler and - last but not at least - more cost efficient systems for relevant and demanding problems.

This workshop is conducted by physicians with many years of personal experience in computer assisted orthopaedic surgery. It will provide its participants with the unique opportunity of getting personal contact for questions and for discussion.

Advanced Workshop I – Custom-made Surgical Guides

Organizers: Klaus Radermacher and Hans-Walter Staudte

The individual template (or customized surgical guides) approach has been originally developed and evaluated in different clinical applications in orthopaedic surgery in the early 1990s. Meanwhile, applications in other disciplines such as cranio-facial surgery as well as dental implantology have been established. Due to its intraoperative simplicity and intuitive handling together with a proven effectiveness and efficiency for selected applications, the individual template approach today is adopted by many clinicians and companies world wide. The workshop will provide a critical review of the benefits and bottlenecks of the template technique - from a historical review to its actual techniques and applications.

The workshop will include topics such as:

- Information acquisition and preprocessing (CT, MR, initial approaches, current techniques and future trends...)
- Planning systems for different applications
- Manufacturing approaches and techniques
- Surgical techniques and applications
- Clinical outcomes review
- Usability and workflow considerations

Advanced Workshop II - THR & HR

Organizers: Stephen Murphy and Randy E. Ellis

As the majority of hip arthroplasties placed without navigation continue to be significantly malpositioned, the need for efficient, simple, and accurate methods of ensuring proper component positioning has become increasingly important. Traditionally, navigation of both total hip arthroplasty and hip resurfacing has taken the form of image-based or image-free systems based on optical or electromagnetic tracking. Increasingly, navigation has been evolving toward both individual patient-specific custom template guides or reuseable mechanical navigation instruments that can be adjusted for individual patient anatomy.

This course will cover:

- Image-free and image-based registration techniques
- Mechanical navigation using customized templates based on pre-operative CT imaging
- Mechanical navigation using re-useable instruments adjusted for individual patient anatomy based on either pre-operative CT imaging and plain radiographs
- Clinical outcomes following application of each of these techniques

The course will be presented by scientific and clinical leaders and pioneers in the field of hip navigation. At the conclusion of the course, clinicians will be familiar with simple, efficient methods of achieving proper component positioning with little, if any, additional operative time.

Advanced Workshop III - TKR & Uni-compartmental Knee Surgery

Organizers: Jean Yves Jenny and Justin Cobb

This four-hour workshop is aimed at the investigator or clinician who wants to understand the details of the CAOS methodologies currently used in total and unicompartmental knee arthroplasty. We have split the session into the six key elements of the process:

- Preop planning
- Registration
- Bone preparation
- Balancing
- Intraoperative alignment checking
- Postoperative validation

Experts will defend the system that they are championing, explaining how that system addresses each of these elements in detail. The relative strengths and weaknesses of the different approaches will be debated.

Delegates will leave with insight into the philosophy behind the different approaches and an appreciation of the real evidence for what they deliver in this challenging field.

Advanced Workshop IV - Robotics & Navigation Systems

Organizers: Jocelyne Troccaz and Brian L. Davies

Robotics and navigation systems for orthopaedic surgery have come a long way in the last 15 years. Systems have become smaller, easier to use, and more accurate. This workshop will consider a number of technological issues given by leading groups as well as presentations on a range of applications from clinicians using all the major robotic systems. One of the largest sources of error has been "registration" between the pre-operative model and the intra-operative system of patient and the CAOS device, and so this has been given a separate session.

The workshop will be presented by a number of internationally renowned speakers who are active in the technology and clinical application of navigation and robotics.

Advanced Workshop V – Novel Technologies & Biomechanics

Organizers: Wafa Skalli and Branislav Jaramaz

Several novel technologies have been introduced in CAOS in recent years. Some are based on on new generation of sensors and devices, and some on synergistic approaches that combine CAOS with new advances in biological sciences and Biomechanics.

Apart from progress in surgical guidance techniques, Biomechanics and novel technologies lead to progress in surgery planning and evaluation. This workshop will address the following topics in two sessions of four presentations each: Novel technologies for surgical guidance:

- Advances in position tracking
- Sensors and CAOS
- Small robots and intelligent devices for CAOS
- CAOS and tissue engineering

Biomechanics and Novel technologies for surgery planning and evaluation:

- Innovative implants and process
- Devices and models
- CAOS and osteoporosis

The workshop will present a broader overview of the state of the art of each topic as well as the authors' own experience in the respective field. It will address the novel approaches in research and the applications in clinical practice.

Advanced Workshop VI - Statistical Shape Modeling and 2D-3D Reconstruction

Organizers: Mauricio Reyes and Guoyan Zheng

Statistical shape analysis is an important tool for understanding anatomical structures from medical images. Statistical shape models give efficient parameterization of the shape variations found in a collection of sample models of a given population. Model-based approaches are popular due to their ability to robustly represent objects. In the last ten years, constructing a patient-specific shape model from a limited number of calibrated x-ray images has drawn more and more attentions. Among possible applications, the need for CT/MRI data to gather bone morphological information can be eliminated, pathologies can be automatically detected, and structural biomechanical behavior of human structures can be efficiently incorporated in surgical planning and simulation.

The aim of the workshop is to introduce and present statistical shape modeling and 2D-3D reconstruction to researchers working in Computer Assisted Orthopedic Surgery (CAOS) and related topics. The workshop will focus on two main aspects: statistical shape models and their applications, and the 2D-3D reconstruction algorithms and their applications to orthopaedic research and intervention.

The workshop will be presented by a varied list of internationally renowned speakers working actively on the topics of statistical shape modeling and 2D-3D reconstruction. The workshop aims at illuminating not only the methodologies but also the practical aspects of these technologies.

Welcome Reception at the Industrial Exhibition

18:15 REGISTRATION AND CAOS-INTERNATIONAL WELCOME RECEPTION

Participants of the above workshops are invited to join participants of the main conference in celebrating our Anniversary, the 10th Annual Meeting of CAOS-International. This reception takes place in the industrial exhibition of the meeting.

21:00 END OF THE DAY

Thursday, June 17, 2010

- 7:00 REGISTRATION
- 7:45 Introduction to the 10th Annual Meeting *P Merloz, BL Davies*

Welcome address

Prof. Jean Paul Levai, Vice President of the French Academy of Orthopaedics

Session I – Trauma

Chairmen: Kwok-Sui Leung and Lutz-Peter Nolte

- 8:00 The advantage of navigation in SI screwing preliminary results of a multicenter study König B, Lunquist J, Gebhard F, Grützner PA, Messmer P, Kahler DM, Krettek C, Stöckle SU
- 8:07 Femoral neck shortening and varus collapse after navigated fixation of intracapsular femoral neck fractures Weil YA, Khoury A, Liebergall M, Zuaiter I, Mosheiff R
- 8:14 Screw placement for acetabular fractures. Which navigation modality (2D vs. 3D) should be used? Gras F., Marintschev I, Wilharm A, Klos K, Mückely T, Hofmann GO, Kahler DM
- 8:21 Intramedullary nailing using a CAOS system based on ultrasound images *Masson-Sibut A, Petit E, Leitner F, Normand J*
- 8:28 Intramedullary vs. extramedullary peritrochanteric femoral fixation: a retrospective quantitative patientspecific study Peleg E, Joskwicz L, Liebergall M, Mosheiff R
- 8:35 DISCUSSION

Session II - Osteotomy

Chairmen: Justin Cobb and Angela Deakin

- 8:50 Development and validation of an adaptable biomechanical model for the planning of correction osteotomies *Belei P, De La Fuente M, Mumme T, Radermacher K*
- 8:57 Navigation provides high accuracy in valgisation osteotomy for the osteoarthritic varus knee *Bartl C, Gebhard F, Keppler P*
- 9:04 DISCUSSION

Session III – Unicompartmental Knee Arthroplasty

Chairmen: Justin Cobb and Angela Deakin

- 9:10 Effects of unicondylar prosthesis anteroposterior slope in lateral compartment translation in the ACL deficient knee

 Suero EM, Citak M, Conditt M, Boscher MRF, Delos D, Pearle AD
 - Sucro Em, Chair in, Conam in, Bosener initi, Belos B, I carte in
- 9:17 Robotically guided bicompartmental arthroplasty

 Conditt MA, Coon TM, Kreuzer S, Horowitz S, Jamieson ML
- 9:24 Two year outcomes of robotically guided UKA Roche MW, Horowitz S, Conditt MA
- 9:31 DISCUSSION

Session IV – Biomechanics

Chairmen: Justin Cobb and Angela Deakin

9:40 Quantifying the biomechanics of knee laxity using computer-assisted technology Clarke JV, Wearing SC, Riches PE, Picard F, Deakin AH

ACL

- 9:47 Kinematics-based knee flexion axis. An in-vitro comparison between derivations from tibio-femoral and patello-femoral joint motion *Belvedere C, Leardini A, Ensini A, Cenni F, Catani F, Giannini S*
- 9:51 DISCUSSION

Coffee Break and Poster Session – Part 1

- 10:00 POSTERS S1-S6 WERE RATED "SPECIAL POSTERS" INDICATING AN EXCEPTIONAL QUALITY OF THIS WORK.
 POSTERS WILL BE PRESENTED IN FIVE SESSIONS, DURING WHICH THE AUTHORS OF THE RESPECTIVE SESSION'S
 POSTERS WILL BE PRESENT AT THE POSTER BOOTHS. HOWEVER, ALL POSTERS AND SPECIAL POSTERS OF ALL
 SESSIONS WILL BE ON DISPLAY DURING THE ENTIRE TIME OF THE MEETING.
 - S1) Medico-economic evaluation of surgical navigation in the treatment of deficiencies of anterior cruciate ligament of the knee Plaweski S
 - S2) Lateral compartment translation in posterolateral corner injuries of the knee: a cadaveric study with navigated measurements

 Suero EM, Petrigliano FA, Citak M, Delos D, Bosscher MRF, Pearle AD
 - S3) Prospective intraoperative comparisons of computer-assisted double-bundle versus computer-assisted single-bundle anterior cruciate ligament reconstruction Grimaldi M, Plaweski S
 - S4) Poster S4 has been withdrawn
 - S5) Orientation of the femoral component in resurfacing arthroplasty of the hip: in-vitro comparison of accuracy of computer navigation and mechanical jigs *Bansal R, Verma R, Gambhir AK, Murphy P*
 - S6) Navigating cup orientation with individualized guides during hip resurfacing *Kunz M, Rudan JF*
 - Combined graft-elongation maps from in vivo kinematics data for knee laxity assessment during navigated ACL reconstruction Fernandez A, Promayon E, Moreau-gaudry A, Plaweski S, Cinquin P
 - 2) Influence of applied valgus force during mechanized pivot shift: computer assisted measurements in a cadaveric study *Bosscher MRF, Suero EM, Pearle AD, Citak M*
 - 3) Software for compartmental translation analysis and virtual 3D visualization of the pivot shift phenomenon Suero EM, Choi D, Citak M, Bosscher MRF, Pearle AD, Plaskos C
 - 4) Evaluation of in vivo hip joint center estimation by three methods *Pillet H, Hausselle J, Sudhoff I, Bonnet X, Skalli W*
 - 5) Biomechanical role of lahlaïdi meniscoligamentous band: a knee kinematic model based on navigation station data for computer-assisted knee surgery *Zemirline A, Stindel E, Zemirline A, Dubrana F*
 - 6) The association between shape descriptors of segmented areas of subchondral sclerosis of the upper tibia and the mechanical axis of the lower limb Sampath SAC, Davies H, Voon SH
 - 7) Gender-specific total knee replacement. Is it better fit female anatomic variations? Song EK, Seon JK, Lee DS, Jeong MS, Park HW, Lee DH
 - 8) Assessment of acetabular anteversion aligned with the transverse acetabular ligament cadaveric study using image-free navigation system Fukunishi S, Fukui T, Nishio S, Fujihara Y, Yoshiya S
 - 9) Analysis of artificial hip joint dislocation considering muscles around a hip joint *Hayashi Y, Horie T, Kiguchi K, Ueno M, Kobayashi T, Mawatari M, Hotokebuchi T*
 - 10) A comparison of different biomechanical hip-models Eschweiler J, Fieten L, Belei P, Kabir K, De La Fuente M, Radermacher K

11)	The dynamic behavior study through finite element method of a new implant used in human ankle joint arthroplasty Copilusi PC, Rinderu P, Marin M, Mazilu T			
12)	Statistical determination of the femoral neck isthmus: three-dimensional femoral neck anatomy Nakamura T, Enomoto H, Yanagimoto S, Fujita Y, Funayama A, Toyama Y, Suda Y	Biomechanics		
13)	Is pincer impingement associated with osteoarthrosis? Klingenstein GG, Murphy SB			
14)	Validation of statistical shape model based reconstruction of the proximal femur: a morphometric study <i>Schumann S, Tannast M, Nolte LP, Zheng G</i>			
15)	3D shapes of the arthritic hip joint: a preliminary study Rasquinha B, Rudan JF, Wood GCA, Ellis RE			
16)	Optoelectronic analysis of the hip range of motion in lateral position and standing position: applications to the computer-aided surgery systems <i>Pinoit Y, Bar P, Bouilland S, Migaud H</i>			
17)	The role of navigation in high tibial osteotomy: a study of 50 (100) cases Heijens EA, Kornherr P, Meister C	ушо		
18)	Computer assisted navigation of high tibial osteotomies for the treatment of adolescent/infantile genu varum (Blount's disease) Whitlock PW, Holden M, Frino J	Osteotomy		
19)	Location of the ulno-humeral joint axis based on anatomical landmarks Leboucher J, Lempereur M, Savéan J, Burdin V, Rémy-Néris O	ıts		
20)	Accuracy and precision of directly navigated scaphoid pinning and conventional percutaneous pinning Al-Sanawi HA, Ellis RE, Sellens RW, Smith EJ, St. John PJ, Pichora DR	Other Joints		
21)	Poster 21 has been withdrawn			
22)	Planning and navigation of an internal hemi-pelvectomy using a dual navigation system <i>Rudan JF, Yach J, Kunz M, Ellis RE</i>	33		
23)	Evolving role of computer assisted surgery in musculoskeletal oncology <i>Mahendra A</i>	Oncology		
24)	Computer assisted surgery (CAS) in orthopaedic oncology Gerbers JG, Jutte PC			
25)	Examination of post-operative femoral component angle of resurfacing THA that uses custom jig <i>Yoshida T, Ikebuchi M, Minoda Y, Iwaki H, Nakamura H</i>	Resurf.		
ession V – Total Hip Arthroplasty, Part 1 – Registration and New Technologies				
·				

Ses

Chairmen: Andy Pearle and Guoyan Zheng

- 11:00 The Hip Sextant: navigation of acetabular cup orientation for hip arthroplasty Steppacher SD, Kowal J, Murphy SB
- 11:07 Navigated ultrasound enables accurate cup positioning in total hip arthroplasty König C, Südhoff I, Mollard B, Sharenkov A, Hasart O, Duda GN, Heller MO
- 11:14 Can the cup of a total hip replacement be oriented in the same way for all patients? Evaluation with an experimental model reproducing an imageless navigation system based on kinematics Migaud H, Pinoit Y, Laffargue P
- 11:21 DISCUSSION
- 11:30 Assess the reliability of a distal pinless array system to determine limb length during total hip arthroplasty using computer-assisted navigation Perumal V, Swank M
- 11:37 Pinless femoral referencing for navigated total hip arthroplasty. Is it really accurate? Renkawitz T, Gneiting S, Haimerl M, Wegner M, Schubert M, Kalteis T, Grifka J, Sendtner E

- 11:44 Advantage of newly developed CT-based fluoroscopy matching navigation system for total hip arthroplasty *Yanagimoto S, Nakayama S, Kaneko H, Fujita Y, Funayama A, Yabuki Y, Sasaki T, Toyama Y*
- 11:51 DISCUSSION

Session VI – Modeling and Simulation

Chairmen: Philippe Merloz and Jocelyne Troccaz

- 12:00 Optimization of statistical shape models of the innominate bone *Turner AW, Davies BL, Rodriguez Y Baena F*
- 12:07 Segmenting peri-prosthetic femoral tissues in patients suffering aseptic loosening: a statistical CT image voxel classifier

 Malan DF, Botha CP, Tax DMJ, Loog M, Nelissen RGHH, Valstar ER
- 12:14 A simulator for learning percutaneous orthopaedic surgery Larcher A, Tonetti J, Luengo V, Ceaux E, Vadcard L, Dubois M
- 12:21 DISCUSSION

Keynote Lecture I

12:30 Preoperative planning and postoperative assessment in spine surgery *Jean Dubousset, Paris, France*

Lunch Break

13:00 LUNCH BREAK AT THE INDUSTRIAL EXHIBITION

Session VII – Total Knee Arthroplasty, Part 1 – Kinematics and Outcomes

Chairmen: Kamal Deep and John F. Rudan

- 14:00 Computer-assisted measurements of coronal knee joint laxity in-vitro are related to low stress behaviour rather than structural properties of the collateral ligaments *Wilson W, Deakin AH, Wearing SC, Payne AP, Picard F*
- 14:07 Intra-operative laxity of knee with cruciate retaining TKA using the balanced gap technique Seon JK, Song EK, Park SJ, Jeong MS, Park JK, Lee DS
- 14:14 Postero-stabilised total knee replacements modify knee kinematics: an intraoperative study using navigation *Massin, P, Boyer P*
- 14:21 DISCUSSION
- 14:30 Navigation of the trochlea (Amplivision®): a new approach to balancing the extensor apparatus during implantation of a total knee replacement. Preliminary radiographic results after 3 months *Peronne E, Chatenet T, Van Hille W, Lamglais E, Regnier C*
- 14:37 Does navigation reduce the number of fixed flexion contractures after total knee arthroplasty? Two year review of 831 TKAs

 Ahmad A, Maheshwari R, Deakin AH, Picard F
- 14:44 Variation of valgus osteoarthritic knee alignment in flexion before and after TKA with different navigation techniques

 Mihalko WM, Kammerzell S, Saleh KJ, Hakki S
- 14:51 DISCUSSION
- 15:00 How can computer assisted surgery help to achieve high flexion in TKR? *Toupin JM*
- 15:07 Computer-assisted non-constrained total knee arthroplasty with osteotomy of the lateral femoral condyle for severe valgus deformation

 Nizard R, Aim F, Zadegan F, Raould A, Hannouche D
- 15:14 Computer navigation versus conventional total knee replacement: a prospective, randomized control trial showing no difference in functional results at five years Harvie P, Sloan K, Beaver RJ

Coffee Break and Poster Session – Part 2

- 15:30 POSTERS S7-S11 WERE RATED "SPECIAL POSTERS" INDICATING AN EXCEPTIONAL QUALITY OF THIS WORK.
 POSTERS WILL BE PRESENTED IN FIVE SESSIONS, DURING WHICH THE AUTHORS OF THE RESPECTIVE SESSION'S
 POSTERS WILL BE PRESENT AT THE POSTER BOOTHS. HOWEVER, ALL POSTERS AND SPECIAL POSTERS OF ALL
 SESSIONS WILL BE ON DISPLAY DURING THE ENTIRE TIME OF THE MEETING.
 - S7) Two-year- results of 3D-based navigation at interventions of the cervical and thoracic spine benefit and problems

 Jarvers JS, Katscher S, Blattert TR, Josten C
 - S8) Adjustment of leg length discrepancy using imageless navigation THA software without a femoral tracker *Nishio S, Fukunishi S, Fukui T, Fujihara Y, Yoshiya S*
 - S9) Minimal-invasive total hip arthroplasty with trial head navigation on a fracture table using stem-first technique *Widmer KH*
- S10) Clinical and radiological outcomes of short stem THA in mini invasive navigated THA *Hakki S*
- S11) Acetabular center axis: a novel alternative registration point to anterior pelvic plane in navigated THA *Hakki S*
- 26) Metal-on-metal resurfacing of the hip with kinematic navigation: follow-up 4 years *Pink M, Lisy M, Pink T, Parizek A*
- The change on vertebral axial rotation after posterior instrumentation of idiopathic scoliosis: a prospective evaluation with the 3D X-ray orthopedic imaging system (EOS)

 Courvoisier AC, Garin CG, Abdoulgamil NA, Paoli VP, Pracros JPP, Kohler RK
- 28) Current use of navigation in spinal surgery Wong E, Wilde P
- 29) Mechanical stability analysis of reference clamp fixation in computer-assisted spine surgery Citak M, Suero EM, Uksul N, Pearle AD, Krettek C, Stübig T, Hüfner T
- 30) A comparison study of two-dimensional and three-dimensional navigation methods Vasarhelyi EM. Simpson AL. Borschneck DP. Ma B. Stewart AJ. Ellis RE
- 31) Soft tissue evaluation with CAS in total knee replacement *Briard, Jl MD, Witoolkollachit, P MD, Guo, L MD*
- 32) Multicentric functional evaluation of TKA by mean of navigation technology Bignozzi S, Castelli CC, Gotti V, Colle F, Zaffagnini S, Marcacci M
- Computer assisted TKA by use of the jig-engaged three-dimensional preoperative planning system: an accuracy examination in clinical cases *Sato T, Watanabe S, Omori G, Koga Y*
- 34) Bone morphing system for rotational alignment in total knee arthroplasty Wu H, Van Driessche S, Goutallier D
- An intelligent bone cutting tool in robotic-assisted knee replacement *Yen PL, Hung SS*
- Influence of navigation in total knee prothesis: results from our 100 first cases and literature review Bajard X, Barbier O, Ollat D, Versier G
- 37) Influence of femoral malrotation on lower limb mechanical axis and knee joint intraarticular contact pressures. A navigated an mechanical measurement *Citak M, Suero EM, Oszwald M, Citak M, Bosscher F, Hüfner T, Krettek C*
- 38) 3D-navigated removal of an auto-aggressively buried needle first clinical application *Hofbauer VR, Surke C, Loeher L, Ochman S, Ruebberdt A, Raschke MJ*
- 39) Experimental navigation for bone reconstruction Normand J, Harisboure A, Leitner F, Pinzuti JB, Dehoux E, Masson-Sibut A

Total Knee Replacement

Trauma

- 40) Tip-to-apex-distance as a measure of fixation failure: a retrospective quantitative validation study by simulation Peleg E, Joskowicz L, Liebergall M, Moshieff R
- 41) Experimental approach of fracture of leg with computer navigation Normand J, Harisboure A, Leitner F, Pinzuti JB, Masson-Sibut M, Dehoux E
- 42) Can 3D computer planning help optimize acetabular column screw placement? *Nakhla A, Richards R, Davda K, Lewis A, Abdelazeem H, Cobb J*
- Quantification of lateral compartment translation magnitudes during pivot shift test in knees with unicompartmental knee replacement and single-bundle ACL reconstruction *Citak M, Bosscher MRF, Musahl V, Pearle AD, Suero EM*
- 44) Navigated, minimal invasive, mobile bearing unicompartmental knee prosthesis. A 2-year follow-up study *Jenny JY, Saussac F, Louis P*
- Navigated uni-compartmental knee replacement should we be lowering our threshold for bone conserving surgery? A functional and radiological review of seventy-five cases *Windley J, Ball S, Nathwani D*
- Proximal femoral tilt and its effect on range-of-motion

 Haimerl M, Gneiting S, Dohmen L, Herzog A, Kramer S, Woerner M, Sendtner E, Renkawitz T
- 47) Statistical method for determining acetabular cup orientaion error introduction *Thornberry RL, Barbu A, Martin JD, Toole GC*
- 48) Impingement detection post total hip arthroplasty using patient-specific modeling *Lin F., Kadono N, Wixson R L, Hendrix R, Loan J P, Makhsous M,*
- 49) Interest of navigation in the control of the leg length during total hip replacement. Prospective study of 65 cases Châtain FG, Barthelemy R, Delalande JL, Tayot O, Chavane F, Béjui-Hugues J, Scor G
- 50) Variability of the anterior pelvic plane to the hip center ASIS pelvic plane *Thornberry RL, Martin JD, Toole GC, Barbu A*
- 51) Comparison of anatometric data between the native hip and after a total prosthesis with a modular neck for centred degenerative hip disease *Merloz PF, Eid A, Bourgeois E, Tonetti J*

Session VIII - Oncology

Chairmen: Shameem Sampath and Philippe Cinquin

- 16:30 Bone sarcomas: computers assist the surgical treatment *Paul L, Cartiaux O, Docquier PL, Delloye C, Banse X*
- 16:37 Merged CT/MRI data for navigated soft tissue tumour resection of the pelvis and spine *Schultheiss M, Arand M, Gebhard F*
- 16:44 Computer-assisted allograft selection for transepiphyseal tumor resection at the knee *Bou Sleiman H, Ritacco LE, Reyes M*
- 16:51 DISCUSSION

Session IX - Shoulder

Chairmen: André Bauer and Philippe Cinquin

- 17:00 CT-based custom jig for glenoid component alignment in reverse total shoulder arthroplasty Suero EM, Lo D, Citak M, Bosscher MRF, O'Loughlin PF, Pearle AD
- 17:07 Evaluation of recognition-based segmentation method for shoulder augmented surgery *Chaoui J, Moineau G, Stindel E, Hamitouche C*
- 17:14 DISCUSSION
- 17:20 END OF THE DAY

Friday, June 18, 2010

7:30 REGISTRATION

Session X – Total Knee Arthroplasty, Part 2 – Accuracy and Robotics

Chairmen: Robert Thornberry and Fernando Rodriguez v Baena

8:00 The factors affecting the ability of an intra-operative navigation system to help select ideal femoral component size in TKA

Schmidt PH, Yaffe MA, Mccarthy R, Stulberg SD

- 8:07 Study of the medio-lateral position of the tibial component relative to the initial anatomical centre of the tibial plateau during implantation of a total knee replacement

 Peronne E, Chatenet T, Lamglais E, Van Hille W
- 8:14 Rotationnal alignement of femoral component with computed-assisted surgery during knee arthroplasty *Boisrenoult PH, Michaut M, Pujol N, Abadie P, Galaud B, Fallet L, Beaufils PH*
- 8:21 DISCUSSION
- 8:30 Cutting errors in total knee replacement *Yau WP, Chiu KY, Yan CH*
- 8:37 Comparison of short-term clinical outcome of robotic total knee arthroplasty using the modified anatomic alignment method versus classic alignment method Song EK, Seon JK, Jeong MS, Lee DS, Park JG, Park CH
- 8:44 Minimally invasive robot-assisted total knee arthroplasty compared with conventional robot-assisted total knee arthroplasty *Choi YW, Lee CT, Yoon SH, Trabish M*
- 8:51 DISCUSSION

Session XI – Robots & Tools

Chairmen: Frédéric Picard and Jocelyne Troccaz

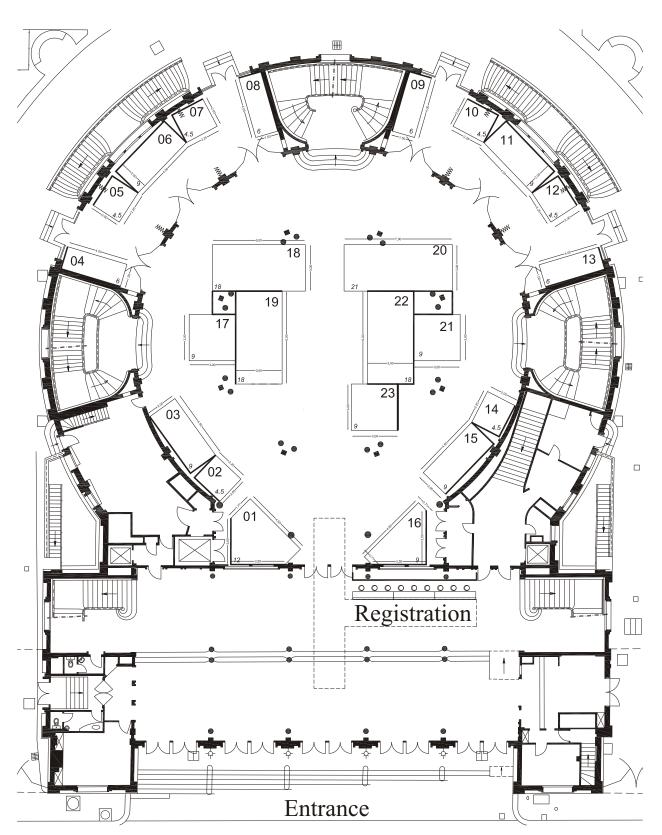
- 9:00 Gradient registration a novel method for non-invasive robotic fracture reduction Oszwald M, Westphal R, Sattler S, Wiebking U, Hufner T, Wahl F, Krettek C, Gosling T
- 9:07 Accurate and reliable navigation of a surgical reaming device for femoral head-neck offset improvement a cadaveric investigation Ecker TM, Puls M, Bastian JD, Keel M, Büchler L, Steppacher SD, Siebenrock KA, Tannast M
- 9:14 Accurate robot assisted laser bone processing Burgner J, Wörn H
- 9:21 DISCUSSION

Industrial Workshops

9:30 THE FOLLOWING TWO INDUSTRIAL WORKSHOPS WILL BE PRESENTED:

Brainlab: Trauma navigation – The next generation

Speakers: Alexander Rübberdt (Center for Orthopaedics and Traumatology, Bielefeld, Germany) Vincent Hofbauer (Clinic for Traumatology, Münster, Germany)


Siemens: 3D fluoroscopy-based imaging & navigation, clinical workflow

Speakers: Philippe Adam (Hautepierre University Hospital, Strasbourg, France)
Joel Gueho (Hautepierre University Hospital, Strasbourg, France)

Marc Heron (Siemens Healthcare, France)

Rolf Schmid (CAS Innovations, Erlangen, Germany)

xhibition CAOS 2010 Industrial

- 1 Biomet
- 2 SurgiQual Institute
- 3 Smith & Nephew
- 4 Tornier International
- 5 OSTESYS
- 6 Swiss National Research Center Co-Me
- 7 IMASCAP
- 8 Philips France
- 9 GROUPE LEPINE
- 10 A²Surgical
- 11 OrthoMIT
- 12 Blue Ortho

- 13 biospace med
- 14 Surgivisio
- 15 Siemens Healthcare France
- 16 Bayer HealthCare
- 17 DePuy France
- 18 B.Braun Aesculap
- 19 BrainLAB
- 20 Zimmer
- 21 Medacta International
- 22 AMPLITUDE
- 23 SYMBIOS

Session XII - Spine, Part 1 - Outcomes

Chairmen: Sam Hakki and Moshe Shoham

- 10:30 Fluoroscopy-based navigation versus conventional procedure in spine surgery Merloz PF, Moreau-Gaudry A, Vouaillat H, Sadok B, Tonetti J, Troccaz J, Bongiorno V, Bodin A
- 10:37 Robotic assisted spinal surgery
 Barzilay Y, Schroeder JE, Libergall M, Hasharoni A, Kaplan L
- 10:44 Two-year experience with 3D-navigation in posterior instrumentation of the cervical spine reliability, application and benefit *Blattert TR, Jarvers JS, Katscher S, Josten C*
- 10:51 DISCUSSION
- 11:00 8 years of clinical experience in navigation assisted upper cervical spine surgery *Tian W, Lang Z*
- 11:07 Robotic assisted vertebral cement augmentation: a radiation reduction tool *Schroeder JE, Kaplan L, Hasharoni A, Joskowicz L, Barzilay Y*
- 11:14 Comparison of the clinical accuracy of different methods for cervical (C2-C7) pedicle screw insertion Liu Y, Tian W, Liu B, Li Q, Hu L, Li Z, Yuan Q, Zhang G
- 11:21 DISCUSSION

Coffee Break and Poster Session - Part 3

- 11:30 POSTERS S12-S17 WERE RATED "SPECIAL POSTERS" INDICATING AN EXCEPTIONAL QUALITY OF THIS WORK.
 POSTERS WILL BE PRESENTED IN FIVE SESSIONS, DURING WHICH THE AUTHORS OF THE RESPECTIVE SESSION'S
 POSTERS WILL BE PRESENT AT THE POSTER BOOTHS. HOWEVER, ALL POSTERS AND SPECIAL POSTERS OF ALL
 SESSIONS WILL BE ON DISPLAY DURING THE ENTIRE TIME OF THE MEETING.
- S12) Comparative study of robotic and conventional total knee arthroplasty after a minimum of 3-year follow-up *Song EK, Seon JK, Jeong MS, Park SJ, Lee DS, Park JK*
- S13) Effect of the rotational alignment of the tibial component Mitsuyasu H, Matsuda S, Fukagawa S, Miura H, Okazaki K, Tashiro Y, Kawahara S, Iwamoto Y
- S14) Midterm results of total knee arthroplasty using a navigation system Song EK, Seon JK, Jeong MS, Park JK, Park SJ, Seo CY, Lee DS
- S15) Navigated, mobile bearing total knee prosthesis. A 5-year follow-up study *Jenny JY, Schoenahl JY, Louis P*
- S16) Ligament balance for varus knee in computer navigation total knee replacement *Yau WP, Chiu KY*
- S17) Change of rotational alignment of the femoral component for the balanced flexion gap after posterior cruciate ligament resection in total knee arthroplasty

 Song EK, Seon JK, Park SJ, Jeong MS, Park JK
- 52) Accuracy of CT based hip navigation system with fluoroscopic registration compared with landmark registration Funayama A, Fujinaka T, Shimizu H, Okubo M, Yabuki Y, Fujita Y, Yanagimoto S, Toyama Y
- 53) Computer assisted analysis of the acetabular entry plane a facility for proper cup placement in total hip arthroplasty

 Radetzki F, Noser H, Stock K, Mendel T, Wohlrab D
- 54) Digital templating of the non-affected hip as a means of minimizing leg-length discrepancy after primary total hip arthroplasty Swanson TV, Brown JM, Mamillapalli SK
- 55) Accuracy of CT-based computer-assisted total hip arthroplasty Steppacher SD, Tannast M, Kowal J, Zheng G, Murphy SB
- Navigation system improved cup orientation in revision total hip arthroplasty Iwaki H, Ikebuchi M, Minoda Y, Yoshida T, Nishikino S, Nakamura H

- 57) Use of CT segmentation, rapid prototyping and virtual procedure simulation in difficult cases of hip replacement surgery

 Lisanti M, Parchi P, Andreani L, Ferrari V, Condino S, Moglia A, Ferrari M, Mosca F
- Three dimensional analysis of uncovered area of cementless cup using a CT-based computational analysis

 Hananouchi T, Saito M, Yoshikawa H, Sugano N
- Can the amplivision navigation system serve as an alternative to the use of a tensor in flexion to determine rotation of the femoral implant during total knee replacement surgery?

 Peronne E, Chatenet T, Lamglais E, Van Hille W, Regnier C
- 60) Isometricity of navigational ACL reconstruction and its clinical outcome Song EK, Seon JK, Lee DS, Jung MS, Park JK, Cho NY
- Preliminary clinical results of patient specific cutting blocks for total knee replacement (TKR) Hafez MA, Jansen A, Portheine F
- 62) Economical aspect of surgical navigation in TKA Gruber P
- 63) Comparative study of stability and clinical outcomes after total knee arthroplasties between navigation system and conventional techniques

 Seon JK, Song EK, Park JK, Park SJ, Jeong MS
- 64) Preoperative simulation of total knee arthroplasty using 3D planning software in the cases with bony defect Shimosawa H, Enomoto H, Nakamura T, Takeuchi H, Niki Y, Toyama Y, Suda Y
- Use of a semi-active system for femoral cuts in TKR the initial results after the first 20 cases Perrier JP, Mandrino A
- The accuracy of utilizing an intra-operative navigation system to help select ideal femoral component size in TKA

 Schmidt PH, Yaffe MA, Mccarthy R, Stulberg SD
- 67) Intra-operative analysis of the kinematic behavior of a total knee replacement by a navigation system. Initial experience and further development *Jenny JY, Firmbach FP*
- 68) Preliminary experience with electromagnetic navigation system in TKA *Tigani D, Sabbioni G, Del Piccolo NA, Rida BA*
- 69) Digital templating compared with kinematic navigation in TKR Hart R, Janeček M, Safi A, Okál F
- 70) Tibial and femoral joint lines are well restored when navigation surgery is performed for total knee arthroplasty

 Catani F, Biasca N, Ensini A, Leardini A, Belvedere C, Giannini S
- 71) Electromagnetic navigation vs. conventional total knee replacement. A functional benefit? *Smith JR, Blyth M, Rowe PJ, Jones B*
- 72) The accuracy of acquisition of an imageless computer-assisted system and its implication for knee arthroplasty

 Lustig S, Servien E, Badet R, Demey G, Neyret P, Donell S
- 73) Computer modeling of TKA alignment variations: the next step towards predicting and improving outcomes in TKA

 Mihalko WM, Williams JL
- 74) Safe tracker placement in computer-navigated TKA Hernandez J, Bayers-Thering M, Phillips M, Krackow K
- 75) Pinholes fractures after computer-assisted total knee arthroplasty: a new complication *Boisrenoult PH, Beladame J, Pujol N, Beaufils PH*
- 76) The usage of computer navigation with knee replacement surgery *Kaminsky AV, Gorbunov EV*

77) Navigated total knee prosthesis exchange. A comparative study with conventional technique *Jenny JY*, *Diesinger Y*

Keynote Lecture II

12:30 What will CAOS's future be?

Jacques Demongeot, Grenoble, France

Lunch Break and General Assembly of CAOS-International

13:00 LUNCH WILL BE SERVED IN THE INDUSTRIAL EXHIBITION. ALL MEMBERS OF THE INTERNATIONAL SOCIETY FOR COMPUTER ASSISTED ORTHOPAEDIC SURGERY ARE KINDLY INVITED TO JOIN THE CAOS-INTERNATIONAL GENERAL ASSEMBLY IN THE LECTURE HALL.

Session XIII - Ultrasound

Chairmen: Peter Keppler and Stéphane Lavallée

- 14:00 Patch-SSM based APP reconstruction from ultrasound images Schumann S, Schwaegli T, Haeni T, Siebenrock KA, Zheng G
- 14:07 Towards an arthrosonic environment

 Moerau-Gaudry A, Griardeau-Montaut D, Meneses A, Mercier N, Gaudin P, Adler RS
- 14:14 Non invasive ultrasound-based bone tracking *Schers J, Troccaz J, Fouard J*
- 14:21 DISCUSSION

Session XIV – Hip Resurfacing

Chairmen: Stephen B. Murphy and Carolyn Anglin

- 14:30 Computer-navigated core decompression for osteonecrosis

 Amzallag J, Dohn P, Laval G, Flouzat Lachianette CH, Jalil R, Ouanes R, Hernigou P
- 14:37 Hip resurfacing with individualized drill templates comparison between antero-lateral and posterior approach

 Kunz M, Rudan JF, Wood GCA, Ellis RE
- 14:44 3D-MRI based planning of hip resurfacing: a comparison with 3D-CT based planning *Nakasone S, Takao M, Nishii T, Sakai T, Nakamura N, Sugano N*
- 14:51 DISCUSSION

Round Table I - ACL

15:00 Chairman: Burt Klos

Participants: Stefano Zaffagnini, Jason Koh, Andrew Pearle, Stephan Plasewski

Coffee Break and Poster Session - Part 4

- 15:30 POSTERS S18-S22 WERE RATED "SPECIAL POSTERS" INDICATING AN EXCEPTIONAL QUALITY OF THIS WORK. POSTERS WILL BE PRESENTED IN FIVE SESSIONS, DURING WHICH THE AUTHORS OF THE RESPECTIVE SESSION'S POSTERS WILL BE PRESENT AT THE POSTER BOOTHS. HOWEVER, ALL POSTERS AND SPECIAL POSTERS OF ALL SESSIONS WILL BE ON DISPLAY DURING THE ENTIRE TIME OF THE MEETING.
- S18) Automatically-optimized local phase features of ultrasound images: first clinical study *Hacihaliloglu IH, Abugarbieh RA, Hodgson AH, Rohling RR, Guy PG*
- S19) Two-step spine vertebra reconstruction from multiple endoscopic images under atlas constraints *Wu C, Narasimhan S, Jaramaz B*
- S20) Planned versus achieved cup orientation: a method for demonstrating the accuracy of CT based navigation Davda K, Nakhla A, Hart AJ, Cobb JP
- S21) Effects of femur shaft fracture type on robotic assisted fracture reduction Joung S, Doke T, Kobayashi E, Nakajima Y, Sugano N, Bessho M, Ohnishi I, Sakuma I

- S22) 3D versus 2D computerized navigation for the internal fixation of medial and lateral femoral neck fractures. An experimental study

 Mueller MC, Belei P, De La Fuente M, Kabir K, Burger C, Radermacher K, Wirtz DC
- 78) The value of navigation in total knee replacements

 Denjean S, Chavane H, Delalande JL, Gaillard T, Tayot O, Chatain F, Pibarot V, Guyen O,

 Carret JP, Béjui-Hugues J
- 79) Navigation assisted total knee arthroplasty in knee osteoarthritis due to extra-articular deformity *Digennaro V, Catani F, Ensini A, Belvedere C, Leardini A, Giannini S*
- 80) Novel analyses of lateral bowing of femur in the coronal plane by applying 3D image processing software Enomoto H, Nakamura T, Toyama Y, Suda Y
- The effect of pelvic movement on the accuracy of hip centre location acquired using an imageless navigation system

 Lustig S, Servien E, Badet R, Demey G, Neyret P, Donell S
- 82) Flexion axis in ostheoarthritic knees Colle F, Castelli CC, Bignozzi S, Gotti V, Zaffagnini S, Marcacci M
- 83) Anterior border of tibia as a landmark for extramedullary alignment guide in total knee arthroplasty Fukagawa S, Matsuda S, Mitsuyasu H, Miura H, Okazaki K, Tashiro Y, Iwamoto Y
- 84) Jig-engaged three-dimensional preoperative planning system for computer assisted TKA validation study
 Watanabe S, Sato T
- 85) CT joint analysis combined with computer navigated surgery for complex knee arthroplasty in post traumatic or deformed limb patient *Molajo AG, Konala P, Ball S, Iranpour F, Nathwani D*
- 86) Does navigated total knee replacement lead to greater improvement of health related quality of life than non-navigated one?

 Pach M, Spacil A, Holibka R
- 87) Accuracy of CT-based navigation for total knee arthroplasty comparison of 2D and 3D analysis *Matsuda S, Mizu-uchi H, Fukagawa S, Mitsuyasu H, Miura H, Okazaki K, Tashiro Y, Iwamoto Y*
- Use of navigation for investigation of femoral neck cut level and positioning of modular short-stem implant

 Mihalko WM, Saleh KJ, Heller MO, Mollard B, König C, Kammerzell S
- 89) THR leg length only navigation *Graf PC*
- 90) A cadaver study validating CT assessment of acetabular component orientation: the Perth CT hip protocol

 Harvie P, Fletcher T, Morrison D, Day R, Sloan K, Beaver R
- 91) Cost effective and practical computer assisted total hip option *Penenberg Bl, Riley M, Bolling Ws*
- 92) Adjusting leg length discrepancy in total hip arthroplasty using digital templating systems Hafez MA
- 93) Total anteversion in THA using image-free navigation system *Fukui T, Fukunishi S, Nishio S, Fujihara Y, Yoshiya S*
- 94) Can computer navigation help us further with implant choice during total hip arthroplasty? *Hoffart HE, Vasak N*
- 95) Tilting error of pelvic plane due to soft tissue Lin F, Kadono N, Wixson R, Hendrix R, Makhsous M
- 96) Measuring pelvic tilt and rotation using 2D-3D matching: a validation study *Zheng G, Steppacher SD, Nolte LP, Murphy SB, Tannast M*
- 97) Outliers detection and removal for accurate surface-based registration *Taquet M*

98)	Limb alignment measurement for high tibial osteotomy with a navigation system
	a comparative study
	Pujol N, Chemama B, Boisrenoult PH, Beaufils PH

- 99) Slice cutting surgical robot in total knee arthroplasty *Hung SS, Yen PL, Lee MY*
- 100) Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

 Penzkofer T, Isfort P, Bruners P, Kyriakou Y, Kalender WA, Schmitz-Rode T, Mahnken AH
- Design of a novel hybrid 6dof external fixator system under consideration of special manufacturing boundary conditions in least developed countries

 Jansen A, Belei P, Schröder S, Portheine F, Radermacher K
- 102) Sensitivity analysis of a biomechanical score for cup positioning in total hip arthroplasty *Dell'Anna J, Fieten L, Eschweiler J, Maus U, Radermacher K*
- An investigation of touch perception during interactions with an arthroscopic probe Tenzer Y, Schwingshackl C, Gondhalekar A, Davies BL, Rodriguez Y Baena F

Session XV - Total Hip Arthroplasty, Part 2 - Frames of Reference and Outcome

Chairmen: Nubuhiko Sugano and Russel H. Taylor

- 16:30 Can transverse acetabular ligament be used for optimal cup placement using image less navigation in total hip arthroplasty?

 Swank M, Perumal V
- 16:37 Development of image-free hip navigation system for dysplastic coxarthritis Ohashi H, Inori F, Okamoto Y, Okajima Y, Fukunaga K, Matsuura M
- 16:44 Study of intra and extra-articular planes of reference for use in total hip replacement Hausselle J, De Thomasson E, Parratte S, Argenson JN, Wessely L, Moreau PE, Geais L, Skalli W
- 16:51 DISCUSSION
- 17:00 Functional anteversion of the acetabulum: importance of the assessment of the mobility at the lumbo-sacral joint for planning the implantation of a THA *Lazennec JY, Boyer P, Gorin M, Catonné Y, Rousseau MA*
- 17:07 Dynamic measurement of hip movement in deep bending activities after total hip arthroplasty using a 4-dimensional motion analysis system

 Tsuda K, Miki H, Kitada M, Nakamura N, Suzuki N, Yonenobu K, Sugano N
- 17:14 Three dimensional alignments of acetabular cups after navigation THA measured with hip CAS system *Tokunaga K, Watanabe K*
- 17:21 DISCUSSION
- 17:30 Accuracy of robotically assisted acetabular cup implantation Dorr LD, Pagnano MW, Trousdale RT, Jamieson ML, Conditt MA
- 17:37 Activities of daily living of the patients after total hip arthroplasty using CT-based navigation system *Nakamura N, Nishii T, Sugano N, Iwana D, Kitada M*
- 17:44 Kinematics based computer assisted surgery for total hip replacement: results of 88 procedures with computed tomographis assessment of implant position *Pinoit Y, Roumazeille T, Laffargue P, Migaud H*
- 17:51 DISCUSSION

CAOS-International Banquet

20:00 CAOS-INTERNATIONAL BANQUET

The Banquet will take place in Versailles Convention Center. It will feature the following highlights:

- Presentation of the Maurice E. Müller Award for Excellence in Computer Assisted Surgery
- Introduction of the new CAOS-International President
- Invitation to the 11th Annual Meeting of CAOS-International in London in 2011

Saturday, June 19, 2010

8:00 REGISTRATION

Session XVI - Total Knee Arthroplasty, Part 3 - Broader Issues

Chairmen: Yoram Weil and Randy E. Ellis

- 8:30 Genu recurvatum in total knee arthroplasty

 Krackow KA, Phillips MJ, McGrath BE, Bayers-Thering M
- 8:37 Computer-assisted surgery system for patellar resection Fu C, Wai J, Lee E, Hutchison C, Myden C, Batuyong E, Anglin C
- 8:44 The tibial cut orientation in total knee arthroplasty conventional vs. computer navigated *Deep K*
- 8:51 DISCUSSION
- 9:00 Problems, obstacles and complications in more than 700 computer assisted knee replacements Manzotti A, Chemello C, De Bartolomeo O, Piccinini D, Confalonieri N
- 9:07 Is knee computer assisted surgery a standard procedure for beginner or expert surgeons? Confalonieri N, De Bartolomeo O, Chemello C, Manzotti A
- 9:14 First steps in the development of a remote monitor of knee range of motion *Vignier S, Martin P, Claasen C, Murray-Smith R, Picard F*
- 9:21 DISCUSSION

Session XVII – ACL

Chairmen: Eun Kyoo Song and Christopher Plaskos

- 9:30 Repeatability of a method to evaluate knee ligaments lenghts during flexion-extension *Pillet H, Bergamini E, Hausselle J, Thoreux P, Cappozzo A, Skalli W*
- 9:37 Navigated anterior cruciate ligament replacement. An experimental validation study *Jenny JY, Ciobanu E, Diesinger Y*
- 9:44 Navigation-assisted assessment of rotational and translational stability of various ACL graft types *Koh JL, Murray M*
- 9:51 DISCUSSION
- 10:00 In-vivo stability and clinical comparison of anterior cruciate ligament reconstruction using low or high femoral tunnel positions

 Seon JK, Song EK, Jeong MS, Park JK
- 10:07 Computer assisted ACL reconstruction versus conventional ACL reconstruction: a randomized clinical trial *Meuffels DE, Reijman M, Verhaar JAN*
- 10:14 DISCUSSION

Coffee Break and Poster Session - Part 5

- 10:20 POSTERS WILL BE PRESENTED IN FIVE SESSIONS, DURING WHICH THE AUTHORS OF THE RESPECTIVE SESSION'S POSTERS WILL BE PRESENT AT THE POSTER BOOTHS. HOWEVER, ALL POSTERS AND SPECIAL POSTERS OF ALL SESSIONS WILL BE ON DISPLAY DURING THE ENTIRE TIME OF THE MEETING.
- 104) Change of the grounding point on the sole of the foot after high tibial osteotomy *Hideo K, Nobuhiko S, Kazuo Y, Asaki H, Naoki S*
- 105) Computer assisted surgery (CAS) in curettage of bone tumors: a new application of CAS in orthopedics

 Gerbers JG, Jutte PC

- 106) The effect of surgical led lights on the accuracy of navigation systems Yabuta YK, Takao TM, Nakasone NS, Sakai ST, Nishii NT, Yoshikawa YH, Sugano SN
- 107) Six degree of freedom load measurements in the hexapod external fixator Wendlandt R, Seide K, Schulz AP, Juergens C
- Distortion corrected electromagnetic needle tracking for spine interventions fElfring R, De La Fuente M, Penzkofer T, Radermacher K
- 109) Contribution to the elaboration of a new co-evolutive technical-clinical design process in MIS Thomann G, Tonetti J, Rasoulifar R, Villeneuve F, Di Donato A
- What difference do the stylus, trackers, and screen layout make in CAOS adoption? Brewster JB, Yakish SD, Lyytinen KL
- 111) A comprehensive computer-assisted application for diagnosis, planning and conduction of navigated joint preserving surgery in patients with femoroacetabular impingement *Puls M, Ecker TM, Tannast M, Steppacher S, Bastian JD, Keel M, Siebnrock KA, Kowal JH*
- 112) The rationale and validation of an automated web-based electronic data capture measurement tool *Stulberg SD, Yaffe M, Villacis DC, Bart G, Greene S*
- 113) Accuracy of 3D fluoroscopic navigation system using a flat panel detector-equipped C-arm *Takao, M, Nishii, T, Sakai, T, Yabuta, K, Yoshikawa, H, Sugano, N*
- 114) Sterilizability evaluation of strain gauges for the use in an intraoperative environment Niggemeyer M, Ulrich N, Heger S, Radermacher K, Mokwa W
- 115) Innovative graphical user interface for 6-DOF navigation tasks Coigny F, Ühlinger R, Schkommodau E
- Diagnostic radiograph based 3D bone reconstruction and pose estimation framework Gamage P, Xie SQ

Session XVIII – Imaging & Tracking

Chairmen: Eric Stindel and Karl-Heinz Widmer

- 10:50 Clinical evaluation of a fluoroscopy based aiming device (Surgix) first clinical results Kraus MD, Schöll H, Riepl C, Bischoff M, Gebhard F
- 10:57 Femoral and tibial torsions evaluation from a fast 3D reconstruction method using biplanar X-rays *Chaibi Y, De Guise JA, Cresson T, Nizard R, Skalli W*
- 11:04 Influence of optical tracking markers on localization accuracy Linke S, Elfring R, Buschmann C, Radermacher K
- 11:11 Initial cadaveric and clinical results of an accelerometer based pinless navigation system for the tibial resection in TKR

 Levi G, Citak M, Scuderi GR, Suero EM, Mayman DJ, Kang MN
- 11:18 DISCUSSION

Session IXX - Spine, Part 2 - New Technologies

Chairmen: Timo Laine and Brian L. Davies

- 11:30 A surgical performance comparison of an uncertainty visualization method with application to pedicle screw insertion

 Simpson AL, Vasarheyli EM, Borschneck DP, Ellis RE, Ma B, Stewart AJ
- 11:37 Construction of a statistical shape model of lumbar vertebrae and its application in reconstructing a 3D model from a single lateral fluoroscopic image *Zheng G, Nolte LP, Ferguson SJ*
- 11:44 Improvement of posterior wedge osteotomy technique is correlated with an optimal saggital planning program. Peri-operative O-arm and navigation allow controlling the peri-operative correction *Le Huec JC*, *Aunoble S, Hauger O, Challali M, Bourghli A*
- 11:51 Navigated percutaneous lumbosacral fusion: a feasibility study using 3D surgical simulation *Yu W, Bünger CE*

11:58 DISCUSSION

Round Table II – CAS for THR

12:10 Chairman: Eric Stindel

Participants: Justin Cobb, Nubuhiko Sugano, Henry Judet

Scientific Awards Ceremony

12:40 Best clinical podium and best clinical poster presentation awards

Sponsored by B. Braun Aesculap

Best technical podium and best clinical poster presentation awards Sponsored by NDI Europe GmbH and CAOS-International

Announcement: CAOS-International Travel Fellowships

Antony Hodgson

Closing

12:55 Closing remarks *Philippe Merloz*

Venue Information

Venue Palais des Congrès de Versailles (Versailles Convention Center)

Place du Château

10, rue de la Chancellerie

78 000 Versailles

France

http://www.viparis.com/ Phone: +33 1 30 97 89 00 Fax: +33 1 30 21 15 82

During the Meeting CAOS2010@CAOS-International.org

To carry out an event such as CAOS would not be possible without the support and contributions by the following companies and organizations. Their help is highly appreciated.

Silver Sponsor

BrainLAB AG

Award Benefactors

B. Braun Aesculap http://www.aesculap.de/

Best Clinical Podium and Best Clinical Poster Presentations

Northern Digital, Inc. http://www.ndigital.com/

Best Technical Podium Presentation

CAOS-International http://www.caos-international.org/

Best Technical Poster Presentation

MEM Foundation http://www.fmem.unibe.ch/ M.E. Müller Award for Excellence in Computer Assisted Surgery

Exhibitors and other Sponsors (in alphabetic order)

Workshop Sponsors (in alphabetic order)

CAOS 2011

Please mark your calendars:

June 15-18

Notes	

DIGITAL LIGHTBOX© ORTHO PEDICS

EXTERNAL DISPLAY

Digital Lightbox® with digital templating technology delivers fast, universal access to patient data on a large, multi-touch display. Key control and routing features support an integrated OR for unlimited functionality.

brainlab.com

CAOS BOOTH #19

xSpot* offers fast and easy hand-held intra-operative image acquisition for most c-arms. We're making another mark on surgical navigation.

brainlab.com

CAOS BOOTH #19

*FDA Clearance and Commercial Availability Pending